网站首页  关于我们  党建思政  团队队伍  团队建设  科学研究  人才培养  专业认证  员工工作  教工之家  员工之窗  English  领导信箱 

beat365”谦之“学术讲坛之十八

作者: 时间:2022-08-03 点击数:




报告题目:Fault Detection of Chemical Process Based on Functional KECA

报告人:商亮亮 教授

报告时间:2022年8月5日  下午3:00-4:00

报告地点:腾讯会议:403-386-313

报告对象:感兴趣的教师、研究生、本科生

主办单位:beat365

报告人简介:

商亮亮,博士,教授,硕士生导师。20167获得东北大学控制理论与控制工程专业博士学位,并入职南通大学电气工程学院201210月至201310月,在美国伊利诺伊理工大学化学工程系访学。主持参与多项国家自然科学基金项目,江苏省高校自然科学基金面上项目和南通市科技计划项目。至今已发表SCI/EI检索论文20余篇。授权国家发明专利多项。获得领域内顶级会议最佳海报论文奖3项;现在为国内外知名期刊的审稿人,如控制理论与应用,Industrial & Engineering Chemistry Research,  Complex & Intelligent Systems等。目前的研究兴趣主要集中在工业过程微小故障检测与诊断,冷水机组故障检测与诊断等。




报告内容:

In this talk, a functional kernel entropy component analysis (KECA) is proposed for industrial processes fault detection. Firstly, the industrial process data is transformed into functional data by introducing the rough penalty term in the curve fitting process, which can effectively eliminate the abnormal value and noise interference, and make up for the missing data. Secondly, the functional data is mapped to the high-dimensional linear feature space through the radial basis function. Thirdly, the entropy cumulative contribution in descending order is proposed to determine the number of principal components. Finally, the effectiveness and merits of the proposed method is verified in the Tennessee Eastman process.

欢迎全校师生踊跃参加!

版权所有 beat·365(中国)官方网站 - 平台入口